2018
51
1
0
227
1

Evaluation of Concrete Plants Readiness to Produce High Quality Concrete for Municipal Constructions Using Past Information
https://ceij.ut.ac.ir/article_66123.html
10.7508/ceij.2018.01.001
1
The only way to test the ability of concrete plants to produce high quality concrete is to test their final products. Also, the process of testing and controlling concrete quality is time consuming and expensive. In this regard, having a quick, cheap and efficient way to predict the readiness of concrete plants to produce high quality concrete is very valuable. In this paper, a probabilistic multiattribute algorithm has been developed to address this problem. In this algorithm, the goal is to evaluate readiness of concrete plants to produce high quality concrete based on the error rate of concrete compressive strength. Using past information and data mining techniques, this algorithm predicts the readiness level of concrete plants by similarity of their production factors to past information. Readiness alternatives for plants are ranked using data mining techniques for order preference based on their production factors (PF) and by evaluating the similarity/difference of each PF to past information. A case study of 20 concrete plants is used to illustrate the capability of the new algorithm; with results showing that the algorithm generated nondominated solutions can assist plant managers to set efficient production plan, a task both difficult, cost and timeconsuming using current methods. In the case study, lab test totally confirm the algorithm outcomes thus it has been successfully verified.
0

1
16


Meghdad
Mohammadian
Former Postgraduate Student, School of Civil Engineering, College of Engineering, University of Tehran
Iran
mohammadian.m@ut.ac.ir


Mohammad
Shekarchi Zadeh
Professor, School of Civil Engineering, College of Engineering, University of Tehran
Iran
shekarch@ut.ac.ir
Algorithm
Concrete Plant
Data Mining
Error Rate of Concrete Compressive Strength
[Anderson, D.R., and Dewar, J.D. (2003). Manual of readymixed concrete, CRC Press.##Arıöz, Ö., Arslan, G., Tuncan, M. and Kıvrak, S. (2007). "Webbased quality control of ready mixed concrete", Building and Environment, 42(3), 14651470.##Chen, L. and Wang, T. (2010). "Modeling strength of highperformance concrete using an improved grammatical evolution combined with Macrogenetic Algorithm", Journal of Computing in Civil Engineering, 24(3), 281288.##Chung, H.M. and Gray, P. (1999). "Special section: Data mining", Journal of Management Information Systems, 16(1), 1116##Defeo, J. and Juran, J.M. (2010). Juran's quality handbook: The complete guide to performance excellence, McGrawHill Education.##Fayyad, U.M., PiatetskyShapiro, G., Smyth, P. and Uthurusamy, R. (1996). Advances in knowledge discovery and data mining, American Association for Artificial Intelligence Menlo Park, CA.##Han, J., Kamber, M. and Pei, J. (2011). Data mining: Concepts and techniques, Morgan Kaufmann.##Jackson, J. (2002). "Data mining: A conceptual overview", Communications of the Association for Information Systems, 8, 267296##Kazaz, A., Ulubeyli, S. and Turker, F. (2004). "The quality perspective of the readymixed concrete industry in Turkey", Building and Environment, 39(11), 13491357.##Lee, B., Kim, J. and Kim, J. (2009). "Optimum concrete mixture proportion based on a database considering regional characteristics", Journal of Computing in Civil Engineering, 5(258), 258265.##Lee, S.C. (2003). “Prediction of concrete strength using artificial neural networks”, International Journal of Engineering Structures, 25(7), 849857.##Mostafavi, A. and Karamouz, M. (2010). “Selecting appropriate project delivery system: Fuzzy approach with risk analysis”, Journal of Construction Engineering and Management, 136(8), 923930.##Ni, H.G. and Wang, J.Z. (2000). “Prediction of compressive strength of concrete by neural networks”, International Journal of Cement and Concrete Research, 30(8), 12451250.##Pham, A., Hoang, N. and Nguyen, Q. (2015). “Predicting compressive strength of highperformance concrete using metaheuristicoptimized least squares support vector regression”, Journal of Computing in Civil Engineering, 30(3), 06015002;14.##Rajagopalan, B. and Krovi, R. (2002). “Benchmarking data mining algorithms”, Journal of Database Management, 13(1), 2535.##Richardson, D.N. and Whitwell, B.A. (2014). “Concrete production plant variables affecting flexural strength relative to compressive strength”, Journal of Materials in Civil Engineering,26(8), 04014032;18.##Sarkar, D. and Dutta, G. (2010). "Design and application of risk adjusted cumulative sum for strength monitoring of ready mixed concrete", Journal of Construction Engineering and Management, 136(6), 623631.##Sarkar, D. and Panchal, R. (2017). “Quality Function Deployment (QFD): A six sigma tool for performance monitoring of ready mixed concrete”, International Advanced Research Journal in Science, Engineering and Technology, 4(2), 1418.##Shekarchizadeh, M., Eftekhar, M.H. and Esmaeili, A.H. (2014). Guideline for ready mixed concrete, Elm Va Adab Publication.##Topçu, I.B. and Sarıdemir, M. (2008). “Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic”, International Journal of Computational Materials Science, 41(3), 305311.##Yeh, I.C. (1998), “Modeling of strength of highperformance concrete using artificial neural networks”, Journal of Cement and Concrete Research, 28(12), 17971808.##Yu, JB., Yu, Y., Wang, LN., Yuan, Z. and Ji, X. (2016). “The knowledge modeling system of readymixed concrete enterprise and artificial intelligence with ANNGA for manufacturing production”, Journal of Intelligent Manufacturing, 27(4), 905–914.##Yuan, Z., Wang, L.N. and Ji, X. (2014). “Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and ANFIS”, Advances in Engineering Software, 67, 156163.##]
1

Comparison of Radial Consolidation Behavior of Clay under Three Types of Cyclic Loading
https://ceij.ut.ac.ir/article_66124.html
10.7508/ceij.2018.01.002
1
Vertical drains and stone columns which have been used in infrastructure construction for highways, ports, coastal regions, etc., provide significant benefits for improving soil characteristics such as reducing the drainage length and accelerating the consolidation process. So the investigation of the radial consolidation is inevitable. Soils may be subjected to cyclic loading such as silos, tanks, etc. This paper presents semianalytical solutions for radial consolidation and investigates the consolidation behavior under three types of cyclic loading. Consolidation under cyclic loads was calculated using the superimposition rule. Barron (1948) and Olson (1977) have presented theories for calculating radial consolidation under static and ramp load respectively. In this study, by using a set of continuous static loads or a series of infinite ramp loads, with alternatively positive and negative signs, we have extended these theories for rectangular, triangular and trapezoidal cyclic loads. The obtained analytic results demonstrate that the average degree of consolidation at the steady state depends on the integral of the loadtime curve for each cycle and it increases with increase of the integral and the results indicate that change in cycle period of time does not effect on the time of getting steady state. Radial and vertical consolidation under rectangular cyclic loading have also compared and the effect of the distance between vertical drains on the time of getting steady state have investigated.
0

17
33


َAmin
Amiri
Civil Engineering Department,Engineering Faculty,Shahid Bahonar University,Kerman,Iran
Iran
amin.amiri1371@yahoo.com


Mohammad Mohsen
Toufigh
Civil Engineering Department, Engineering Faculty, Shahid Bahonar University, Kerman, Iran
Iran
toufigh@uk.ac.ir


Sina
Sadeghi Janat Abadi
Civil Engineering Department, Engineering Faculty, Shahid Bahonar University, Kerman, Iran
Iran
sina.s3993@gmail.com


Vahid
Toufigh
Department of Civil Engineering, Graduate University of Advanced Technology, Kerman, Iran
Iran
v.toufigh@kgut.ac.ir
Radial Consolidation
Rectangular Cyclic Loading
Superimposition Rule
Trapezoidal Cyclic Loading
Triangular Cyclic Loading
Vertical Drains
[Abbaspour, M. (2014). “An investigation of consolidation process under triangular cyclic loading by numerical and experimental analysis”, Electronic Journal of Geotechnical Engineering, 19, 14031417.##Barron, R. (1948). “Consolidation of finegrained soils by drain wells”, Transportation, ASCE, 113, Paper No. 2346.##Basett, D. and Brodie, A. (1961). “A study of Matabitchual varved clay”, Ontario Hydro Research News, 13, 16.##CovoTorres, Á., EljaiekUrzola, M. and VivasReyes, R. (2015). “Radial consolidation for equal strain with resistance in the vertical drain”, Soil and Tillage Research, 145, 8792.##Das, B.M. (2013). Advanced soil mechanics, CRC Press.##Deng, Y.B., Xie, K.H. and Lu, M.M. (2013). “Consolidation by vertical drains when the discharge capacity varies with depth and time”, Computers and Geotechnics, 48, 18.##Haley, X. and Aldrich, X. (1969). “Engineering properties of foundation soils at Long CreekFore river areas and Black Cove”, Report to Maine State Highway Company. ##Hansbo, S., Jamiolkowski, M. and Kok, L. (1981). “Consolidation by vertical drains”, Geotechnique, 31, 4566.##Ladd, C. and Luscher, U. (1965). “Engineering properties of the soils underlying the MIT campus”, Research Report, R6558.##Lei, G., Fu, C. and Ng, C.W. (2016). “Verticaldrain consolidation using stone columns: An analytical solution with an impeded drainage boundary under multiramp loading”, Geotextiles and Geomembranes, 44, 122131.##Lo, W.C., Sposito, G., Lee, J.W. and Chu, H. (2016). “Onedimensional consolidation in unsaturated soils under cyclic loading”, Advances in Water Resources, 91, 122137.##Lowe III, J., Zaccheo, P.F. and Feldman, H.S. (1964). “Consolidation testing with back pressure”, Journal of the Soil Mechanics and Foundations Division, ASCE, 90, 6986.##Lu, M., Wang, S., Sloan, S.W., Sheng, D. and Xie, K. (2015). “Nonlinear consolidation of vertical drains with coupled radial–vertical flow considering well resistance”, Geotextiles and Geomembranes, 43(2), 182189.##Lu, M., Xie, K. and Wang, S. (2011). “Consolidation of vertical drain with depthvarying stress induced by multistage loading”, Computers and Geotechnics, 38, 10961101.##Ni, J., Indraratna, B., Geng, X.Y., Carter, J.P., and Rujikiatkamjorn, C. (2013). “Radial consolidation of soft soil under cyclic loads”, Computers and Geotechnics,50, 15.##Olson, R.E. (1977). “Consolidation under timedependent loading”, Journal of the Geotechnical Engineering Division, 103, 5560.##Ouria, A., Desai, C.S. and Toufigh, V. (2013). “Disturbed state concept–based solution for consolidation of plastic clays under cyclic loading”, International Journal of Geomechanics, 15(1), 04014039.##Razouki, S.S., Bonnier, P., Datcheva, M. and Schanz, T. (2013). “Analytical solution for 1D consolidation under haversine cyclic loading”, International Journal for Numerical and Analytical Methods in Geomechanics, 37(14), 23672372.##Razouki, S.S. and Schanz, T. (2011). “Onedimensional consolidation under haversine repeated loading with rest period”, Acta Geotechnica, 6(1), 1320.##Rezaei, Z. (2016). “Consolidation of elastic and inelastic clays under triangular cyclic loading”, M.Sc. Thesis, Univrrsity of Shahid Bahonar, Kerman, Iran (In Persian).##Richart, F.E. (1957). “A review of the theories for sand drains”, Florida Engineering and Industrial Experiment Station, College of Engineering, University of Florida.##Schiffman, R. (1958). “Consolidation of soil under timedependant loading and varying permeability”, Highway Research Board Proceedings, 37, 584617.##Speirs, A.D., Beaulé, P.E., Ferguson, S.J. and Frei, H. (2014). “Stress distribution and consolidation in cartilage constituents is influenced by cyclic loading and osteoarthritic degeneration”, Journal of Biomechanics, 47(10), 23482353.##Toufigh, M.M. and Ouria, A. (2009). “Consolidation of inelastic clays under rectangular cyclic loading”, Soil Dynamics and Earthquake Engineering, 29, 356363.##Tsien, S. (1955). “Stability of marsh deposits”, Highway Research Board Bulletin, 15, 1543.##Walker, R.T. (2011). “Vertical drain consolidation analysis in one, two and three dimensions”, Computers and Geotechnics, 38, 10691077.##Wallace, G. and Otto, W. (1964). “Differential settlement at selfridge air force base”, Journal of the Soil Mechanics and Foundations Division, 90, 197220.##Wilson, N. and Elgohary, M. (1974). “Consolidation of soils under cyclic loading”, Canadian Geotechnical Journal, 11, 420423.##YingChun, Z. and KangHe, X. (2005). “Study on onedimensional consolidation of soil under cyclic loading and with varied compressibility”, Journal of Zhejiang University Science, 6, 141147.##Yoshikuni, H. and Nakanodo, H. (1974). “Consolidation of soils by vertical drain wells with finite permeability”, Soils and Foundations, 14, 3546.##]
1

Behavior of Piled Raft Foundation on Heterogeneous Clay Deposits Using Random Field Theory
https://ceij.ut.ac.ir/article_66125.html
10.7508/ceij.2018.01.003
1
In the case of problematic soils and tall buildings where the design requirements cannot be satisfied merely by a raft foundation, it is of common practice to improve the raft performance by adding a number of piles so that the ultimate load capacity and settlement behavior can be enhanced. In this study, the effect of spatial variability of soil parameters on the bearing capacity of piled raft foundation is investigated based on the random field theory using the finite difference software of FLAC3D. The coefficient of variation (COV) of the soil’s undrained shear strength, the ratio of standard deviation to the mean, was considered as a random variable. Moreover, the effect of variation of this parameter on the bearing capacity of piled raft foundation in undrained clayey soils was studied taking the Monte Carlo simulation approach and the normal statistical distribution. According to the results, taking into account the soil heterogeneity generally results in more contribution of the raft in bearing capacity than that of the homogenous soils obtained by experimental relationships, which implies the significance of carrying out stochastic analyses where the soil properties are intensively variant.
0

35
54


Reza
Jamshidi Chenari
The University of Guilan
Iran
jamshidi_reza@yahoo.com


Ali
Ghorbani
The University of Guilan
Iran
ghorbani@guilan.ac.ir


Amin
Eslami
The University of Guilan
Iran
amin.eslami@gmail.com


Fazeleh
Mirabbasi
The University of Guilan
Iran
f.mirabassi@gmail.com
Bearing Ratio
Piled Raft
Random Field Theory
Spatial Variation
Undrained Shear Strength
[Adler, R.J. (2010). "The geometry of random fields", Society for Industrial and Applied Mathematics, SIAM edition.##Ahmed, A. and Soubra, A.H. (2012). "Probabilistic analysis of strip footings resting on a spatially random soil using subset simulation approach", Georisk, 6(3), 188–201.##Albusoda, B.S. and Salem L.A.K. (2016). "The effect of interaction on pileraft system settlement subjected to earthquake excitation", Applied Research Journal, 2(4), 205214.##Bajad, S. and Sahu R. (2008). "An experimental study on the behavior of vertically loaded piled raft on soft clay", The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India.##Baziar, M., Ghorbani A. and Katzenbach R. (2009). "Smallscale model test and threedimensional analysis of pileraft foundation on mediumdense sand", International Journal of Civil Engineering, 7(3), 170175.##Bourgeois, E., De Buhan, P. and Hassen, G. (2012). "Settlement analysis of piledraft foundations by means of a multiphase model accounting for soilpile interactions", Computers and Geotechnics, 46, 2638.##Ching, J. and Phoon, K.K. (2013). "Probability distribution for mobilized shear strengths of spatially variable soils under uniform stress states", Georisk, 7(3), 209–224.##Cho, J., Lee, J.H., Jeong, S. and Lee, J. (2012). "The settlement behavior of piled raft in clay soils", Ocean Engineering, 53, 153163.##Dasaka, S.M. and Zhang, L.M. (2012). "Spatial variability of in situ weathered soil", Géotechnique, 62(5), 375384.##DeGroot, D.J. (1996). "Analyzing spatial variability of in situ soil properties", Uncertainty in the Geologic Environment: From Theory to Practice, ASCE.##Elahi, A. (2011). "Evaluation of piledraft bearing capacity located on heterogeneous soils using random field theory", M.Sc. Dissertation, University of Guilan, Rasht, Iran, (in Persian).##Fan, H., Huang, Q. and Liang, R. (2014). "Reliability analysis of piles in spatially varying soils considering multiple failure modes", Computers and Geotechnics, 57(Apr), 97104.##Fleming, K., Weltman, A., Randolph, M. and Elson, K. (2008). Piling engineering, CRC press.##Griffiths, D. and Fenton G.A. (2001). "Bearing capacity of spatially random soil: The undrained clay prandtl problem revisited", Geotechnique, 51(4), 351360.##Haldar, S. and Babu G.S. (2008a). "Reliability measures for pile foundations based on cone penetration test data", Canadian Geotechnical Journal, 45(12), 16991714.##Haldar, S. and Babu, G.S. (2008b). "Effect of soil spatial variability on the response of laterally loaded pile in undrained clay", Computers and Geotechnics, 35(4), 537547.##Husain, A. (2016). "Probabilistic study for single pile in cohesionless soil Using Monte Carlo simulation technique", International Journal of Scientific and Engineering Research, 7(2). 628633.##Itasca, F.D. (2009). "Fast Lagrangian analysis of continua in 3 dimensions, Version 4.0", Minneapolis, Minnesota, Itasca Consulting Group 438.##Jamshidi Chenari, R. and Mahigir, A. (2014). "The effect of spatial variability and anisotropy of soils on bearing capacity of shallow foundations", Civil Engineering Infrastructures Journal, 47(2), 199213.##Jamshidi Chenari, R., and Alaie, R. (2015). "Effects of anisotropy in correlation structure on the stability of an undrained clay slope", Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 9(2), 109123.##Jamshidi Chenari, R. and Behfar, B. (2017). "Stochastic Analysis of Seepage through Natural Alluvial Deposits Considering Mechanical Anisotropy", Civil Engineering Infrastructures Journal, 50(2), 233253.##Jiang, S.H., Li, D.Q., Cao, Z.J., Zhou, C.B. and Phoon, K.K. (2014). "Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation", Journal of Geotechnical and Geoenvironmental Engineering, 141(2): 04014096.##Kalos, M.H. and Whitlock, P.A. (2008). Monte Carlo methods, John Wiley & Sons.##Kenarsari, E., Oloomi, R., Jamshidi Chenari, R. and Eslami, A. (2011). "Effect of vertical heterogeneity in soil strength on pile bearing capacity prediction from CPT data", Proceedings of the 36th Annual Conference on Deep Foundations, Boston, MA.##Lee, J., Kim, Y. and Jeong, S. (2010). "Threedimensional analysis of bearing behavior of piled raft on soft clay", Computers and Geotechnics, 37(1), 103114.##Lee, J., Park, D. and Choi, K. (2014). "Analysis of load sharing behavior for piled rafts using normalized load response model", Computers and Geotechnics, 57, 6574.##Lee, J., Park, D. and Park, K. (2015). "Estimation of loadsharing ratios for piled rafts in sands that includes interaction effects", Computers and Geotechnics, 63, 306314.##Li, D.Q., Qi, X.H., Cao, Z.J., Tang, X.S., Phoon, K.K. and Zhou, C.B. (2016). "Evaluating slope stability uncertainty using coupled Markov chain", Computers and Geotechnics, 73: 7282.##Li, M., Lu, X., Lu, X. and Ye, L. (2014). "Influence of soil–structure interaction on seismic collapse resistance of supertall buildings", Journal of Rock Mechanics and Geotechnical Engineering, 6(5), 477485.##LloretCabot, M., Fenton, G.A. and Hicks, M.A. (2014). "On the estimation of scale of fluctuation in geostatistics", Georisk, 8(2), 129–140.##Matsuo, M. and Kuroda, K. (1974). "Probabilistic approach to design of embankments", Soils and Foundations, 14(2), 117.##Morse, R. (1971). "Importance of proper soil units for statistical analysis", Proceedings of the 1st International Conference on Applications of Statistics and Probability to Soil and Structural Engineering, Hong Kong.##Nguyen, D.D.C., Jo, S.B. and Kim, D.S. (2013). "Design method of piledraft foundations under vertical load considering interaction effects", Computers and Geotechnics, 47, 1627.##Niandou, H. and Breysse, D. (2007). "Reliability analysis of a piled raft accounting for soil horizontal variability", Computers and Geotechnics, 34(2), 7180.##Papadopoulos, C.E. and Yeung, H. (2001). “Uncertainty estimation and Monte Carlo simulation method”, Flow Measurement and Instrumentation, 12(4), 291298.##Park, D., Park, D. and Lee, J. (2016). "Analyzing load response and load sharing behavior of piled rafts installed with driven piles in sands", Computers and Geotechnics, 78, 6271.##Patil, J.D., Vasanwala, S.A. and Solanki, C.H. (2014). "An experimental investigation on behavior of piled raft foundation", International Journal of Geomatics and Geosciences, 5(2), 300.##Phoon, K.K. and Kulhawy, F.H. (1999). "Characterization of geotechnical variability", Canadian Geotechnical Journal, 36(4), 612624.##Popescu, R., Deodatis, G. and Nobahar, A. (2005). "Effects of random heterogeneity of soil properties on bearing capacity", Probabilistic Engineering Mechanics, 20(4), 324341.##Poulos, H. (2002). "Simplified design procedure for piled raft foundations", Deep Foundations 2002: An International Perspective on Theory, Design, Construction and Performance, pp: 441458.##Poulos, H.G. and Davids, A.J. (2005). "Foundation design for the emirates twin towers, Dubai." Canadian Geotechnical Journal, 42(3), 716730.##Randolph, M. (1992). "Design methods for pile groups and piled rafts", XIII ICSMFE, 6182.##Reul, O. and Randolph M. (2003). "Piled rafts in overconsolidated clay: comparison of in situ measurements and numerical analyses", Geotechnique, 53(3), 301315.##Reul, O. and Randolph, M.F. (2004). "Design strategies for piled rafts subjected to nonuniform vertical loading", Journal of Geotechnical and Geoenvironmental Engineering, 130(1), 113.##Saeedi Azizkandi, A. and Fakher, A. (2014). "A Simple Algorithm for Analyzing a Piled Raft by Considering Stress Distribution", Civil Engineering Infrastructures Journal, 47(2), 215227.##Salgado, R., and Kim, D. (2014). "Reliability analysis of load and resistance factor design of slopes", Journal of Geotechnical and Geoenvironmental Engineering, 140(1),5773.##Tung, Y.K. and Yen, B.C. (2005). Hydrosystems engineering uncertainty analysis, ASCE,McGraw Hill. ##Vanmarcke, E. (2010). Random fields: Analysis and synthesis, World Scientific.##Zhang, J., Zhang, L. and Tang, W.H. (2011). "New methods for system reliability analysis of soil slopes", Canadian Geotechnical Journal, 48(7), 11381148.##Zhang, L., Goh, S.H. and Yi, J. (2016). "A centrifuge study of the seismic response of pileraft systems embedded in soft clay", Géotechnique, 67(6), 479490.##]
1

Identification of Structural Defects Using Computer Algorithms
https://ceij.ut.ac.ir/article_66126.html
10.7508/ceij.2018.01.004
1
One of the numerous methods recently employed to study the health of structures is the identification of anomaly in data obtained for the condition of the structure, e.g. the frequencies for the structural modes, stress, strain, displacement, speed, and acceleration) which are obtained and stored by various sensors. The methods of identification applied for anomalies attempt to discover and recognize patterns governing data which run in sharp contrast to the statistical population. In the case of data obtained from sensors, data appearing in contrast to others, i.e. outliers, may signal the occurrence of damage in the structure. The present research aims to employ computer algorithms to identify structural defects based on data gathered by sensors indicating structural conditions. The present research investigates the performance of various methods including Artificial Neural Networks (ANN), DensityBased Spatial Clustering of Applications with Noise (DBSCAN), Manhattan Distance, Curve Fitting, and Box Plot in the identification of samples from damages in a case study using frequency values related to a cablesupport bridge. Subsequent to the implementation of the methods in the datasets, it was shown that the ANN provided the optimal performance.
0

55
86


Mohammad
Mohammadizadeh
Department of Civil Engineering, Faculty of Engineering, University of Hormozgan, Bandar Abbas, Iran
Iran
mrzmohammadizadeh@yahoo.com


Babak
Yasi
Department of Civil Engineering, Faculty of Engineering, University of Hormozgan, Bandar Abbas, Iran
Iran
babakyasi69@yahoo.com
Artificial Neural Networks
Damage Identification
frequency
Manhattan Distance
Structures
[Alguliyev, R.M., Aliguliyev, R.M., Imamverdiyev, Y.N. and Sukhostat, L.V. (2017). "An anomaly detection based on optimization", International Journal of Intelligent Systems and Applications, 9(12), 8796.##Alguliyev, R., Aliguliyev, R. and Sukhostat, L. (2017). "Anomaly detection in Big data based on clustering", Statistics, Optimization and Information Computing, 5(4), 325340.##Beliakov, G., Kelarev, A. and Yearwood, J. (2011). "Robust Artificial Neural Networks and Outlier Detection", Journal of Mathematical Programming and Operations Research, 61(12), 14671490 , Deakin University, Australia.##Benjamini, Y. (1988). "Opening the Box of a Boxplot", The American Statistician, 42(4), 257262.##Bai, M., Wang, X., Xin, J. and Wang, G. (2016). "An efficient algorithm for distributed densitybased outlier detection on big data", Neurocomputing, 181(C), 139146.##Bai, L., Liang, J. and Dang, C. (2011). "An initialization method to simultaneously find initial cluster centers and the number of clusters for clustering categorical data", KnowledgeBased Systems, 24(6), 785795.##Ester, M., Kriegel, HP., Sander, J. and Xu, X. (1996). "A DensityBased Algorithm for Discovering Clusters in Large Spatial Databases with Noise", KDD'96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining,Institute for Computers Science, University of Munich, Germany, 226231.##Frigge, M., Hoaglin, D.C. and Iglewicz, B. (1989). "Some Implementations of the Boxplot", The American Statistician, 43(1), 5054.##Gaffney, J. and Ulvila, J. (2001). "Evaluation of intrusion detectors: A decision theory approach", In Proceedings of IEEE Symposium on Security and Privacy, Oakland, CA, USA, 5061.##Gagolewski, M., Bartoszuk, M. and Cena A. (2016). "Genie: A new, fast, and outlierresistant hierarchical clustering algorithm", Information Sciences, 363, 823.##Hand, D., Mannila, H. and Smyth, P. (2001). "rinciples of data mining, The MIT Press.##Huang, J., Zhu, Q., Yang, L. and Feng, J. (2016). "A nonparameter outlier detection algorithm based on Natural Neighbor", KnowledgeBased Systems, 92, 7177.##Johnson, R. and Wichern, D. (1992)."Applied multivariate statistical analysis, Prentice Hall.##Jiang, F., Liu, G., Du, J. and Sui, Y. (2016). "Initialization of Kmodes clustering using outlier detection techniques”, Information Sciences, 332, 167183.##Karim, A.N.M., Nordin, A.N. and Begum, S. (2014), "Technical and Economic Feasibility of Sensor Technology for Health/Environmental Condition Monitoring", Comprehensive Materials Processing, 13, 499514.##Latecki, L. J., Lazarevic, A. and Pokrajac, D. (2007). "Outlier Detection with Kernel Density Functions", 5th International Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM), Leipzig, Germany, pp. 6175.##Loureiro, A., Torgo, L. and Soares, C. (2004). "Outlier detection using clustering methods: A data cleaning application", In proceedings of the data mining for business workshop, University of Porto, Porto, Portugal.##Massart, D.L., SmeyersVerbeke, A., Capron, X. and Schlesier, K. (2005). "Practical data handling visual presentation of data by means of box plots", Journal of Vrije Universiteit Brussel, 18(4), 215218.##Montgomery, D.C., Peck, E.A. and Vining, G.G. (2012). Introduction to Linear Regression Analysis, 3rd Edition, John Wiley & Sons, New York, USA.##Motulsky, H. and Brown, R. (2006). "Detecting outliers when fitting data with nonlinear regression: A new method based on robust nonlinear regression and the false discovery rate", BMC Bioinformatics, 7(123), 14712105.##Ni, Y.Q. (2014). "Structural health monitoring of cablesupported bridges based on vibration measurements", Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, pp. 6572.##Sinwar, D. and Kaushik, R. (2014). "Study of Euclidean and Manhattan Distance Metrics using simple Kmeans clustering", International Journal for Research in Applied Science and Engineering Technology, 2, 270274.##Tang, B. and He, H. (2017), "A local densitybased approach for outlier detection", Neurocomputing, 241, 171180.##Zhuang, W., Zhang, Y. and Grassle, J.F. (2004). "Identifying erroneous data using outlier detection techniques", Proceedings Ocean Biodiversity Informatics, International Conference on Marine Biodiversity Data Management, Hamburg, Germany, 37, 187192.##Zhu, S. and Xu, L. (2018)."Manyobjective fuzzy centroids clustering algorithm for categorical data", Expert Systems with Applications, 96, 230248.##]
1

Thermodynamic Modeling of the Effects of WollastoniteSilica Fume Combination in the Cement Hydration and Sulfate Attack
https://ceij.ut.ac.ir/article_66127.html
10.7508/ceij.2018.01.005
1
Sulfate attack is a series of physicochemical reactions between hardened cement paste and sulfate ions. Sulfate ion penetration into the hydrated cement results in the formation of voluminous and deleterious phases such as gypsum and ettringite which are believed to cause deterioration and expansion of concrete. Concrete deterioration due to sulfate attack depends on many parameters, however, in experimental studies, the implementation of the parameters and obtaining the results in a short time are too difficult. In this paper the effect of wollastonite, with and without silica fume, on the performance of cement based materials during hydration and magnesium sulfate attack was studied by thermodynamic modeling. Thermodynamic modelling was carried out using the Gibbs free energy minimization program GEMS. By this method, in addition to investigating the type and volume of the produced material, the optimal substitution percentage of wollastonite and silica fume were studied as well. In sulfate attack, especially at higher percentages of substitution, wollasonite is not very effective in itself. Wollasonite replacement has a reverse effect on monosulfate and ettringite phases. Volume of these phases increases with addition of the substitution percentage. Substituting a portion of the cement with wollastonite and silica fume would improve sulfate resistance. Substitution of 5% of wollasonite and 10% of silica fume has shown the best performance, highest increase in CSH gel volume and reduction in harmful phases such as gypsum, ettringite and brucite.
0

87
100


Amir
Tarighat
Department of Civil Engineering, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran
Iran
tarighat@srttu.edu


Yaghout
Modarres
Faculty of Civil Engineering, Shahid Rajaee Teacher Training University,
Iran
yaghout.modarres@gmail.com


Milad
Mohammadi
Faculty of Civil Engineering, Shahid Rajaee Teacher Training University
Iran
milad.mohamadi@srttu.edu
modeling
Silica Fume
Sulfate Attack
Thermodynamics
Wollastonite
[AlAmoudi, O.S.B. (2002). "Attack on plain and blended cements exposed to aggressive sulfate environments", Cement and Concrete Composites, 24(3), 305316.##Arshad, A., Shahid, I., Anwar, U.H.C., Baig, M.N., Khan, S. and Shakir, K. (2014). "The wastes utility in concrete", International Journal of Environmental Research, 8(4), 13231328.##Askarinejad, A. (2017). "Using different methods of nanofabrication as a new way to activate supplementary cementitious materials; a review", Civil Engineering Infrastructures Journal, 50(1), 119.##American Society for Testing and Materials. Committee C9 on Concrete and Concrete Aggregates. (2005). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM C, 685.##Balonis, M. (2010). "The influence of inorganic chemical accelerators and corrosion inhibitors on the mineralogy of hydrated Portland cement systems", PhD. Thesis, Aberdeen University.##Crooks, A.F. (1999). Wollastonite in south Australia, South Australian Department of Primary Industries and Resources, Report Book 99/16.##Damidot, D., Lothenbach, B., Herfort, D. and Glasser, F.P. (2011). "Thermodynamics and cement science", Cement and Concrete Research, 41(7), 679695.##Gollop, R.S. and Taylor, H.F.W. (1992). "Microstructural and microanalytical studies of sulfate attack, I: Ordinary Portland cement paste", Cement and Concrete Research, 22(6), 10271038.##Gosh, N. (2002). Advances in cement technology: Chemistry, manufacture, and testing, Tech Books International, New Delhi.##Jahim, H. (2010). "The use of wollastonite to enhance fresh and mechanicalproperties of concrete", M.Sc. Thesis, Baghdad University.##Kalla, P., Misra, A., Gupta, R.C., Csetenyi, L., Gahlot, V. and Arora, A. (2013). "Mechanical and durability studies on concrete containing wollastonite–fly ash combination", Construction and Building Materials, 40, 11421150.##Kolani, B., BuffoLacarrière, L., Sellier, A., Escadeillas, G., Boutillon, L. and Linger, L. (2012). "Hydration of slagblended cements", Cement and Concrete Composites, 34(9), 10091018.##Kulik, D.A., Wagner, T., Dmytrieva, S.V, Kosakowski, G., Hingerl, F.F., Chudnenko, K.V. and Berner, U.R. (2013). "GEMSelektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes", Computational Geosciences, 17(1), 124.##Kunther, W. (2012). "Investigation of sulfate attack by experimental and thermodynamic means", M.Sc. Thesis, EPFL Swiss University.##Kunther, W., Lothenbach, B. and Scrivener, K.L. (2013). "On the relevance of volume increase for the length changes of mortar bars in sulfate solutions", Cement and Concrete Research, 46, 2329.##Lothenbach, B. (2010). "Thermodynamic equilibrium calculations in cementitious systems", Materials and Structures, 43(10), 14131433.##Lothenbach, B., Bary, B., Le Bescop, P., Schmidt, T. and Leterrier, N. (2010a). "Sulfate ingress in Portland cement", Cement and Concrete Research, 40(8), 12111225.##Lothenbach, B., Damidot, D., Matschei, T. and Marchand, J. (2010b). "Thermodynamic modelling: State of knowledge and challenges", Advances in Cement Research, 22(4), 211223.##Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011). "Supplementary cementitious materials", Cement and Concrete Research, 41(12), 12441256.##Lothenbach, B., Le Saout, G., Ben Haha, M., Figi, R. and Wieland, E. (2012). "Hydration of a lowalkali CEM III/B–SiO 2 cement (LAC)", Cement and Concrete Research, 42(2), 410423.##Mathur, R., Mishra, A.K. and Goel, P. (2007). "Marble slurry dust and wollastoniteinert mineral admixture for cement concrete", Indian Highways, 35(12), 4146.##Maxim, L.D. and Mcconnell, E.E. (2005). "A review of the toxicology and epidemiology of wollastonite", Inhalation Toxicology, 17(9), 451466.##Piasta, W., Marczewska, J. and Jaworska, M. (2014). "Some aspects and mechanisms of sulphate attack", Structure and Environment, 6(3), 1924.##Ramezanianpour, A., Pourbeyk, P. and Modi, F. (2012). "The durability of rice husk ash concrete against sulfate attack", Amirkabir Journal of Civil and Environmental Engineering, 45(1),1323.##Ransinchung RN, G.D. and Kumar, B. (2009). "Investigations on pastes and mortars of ordinary Portland cement admixed with wollastonite and microsilica", Journal of Materials in Civil rngineering, 22(4), 305313.##Rothstein, D., Thomas, J.J., Christensen, B.J. and Jennings, H.M. (2002). "Solubility behavior of Ca, S, Al, and Sibearing solid phases in Portland cement pore solutions as a function of hydration time", Cement and Concrete Research, 32(10), 16631671.##Tarighat, A. and Afzali, O. (2016). "Study of mechanical properties and some durability indices of concrete containing microplasma wollastonite and silica fume pozzolan", Journal of Civil and Enviroment Engineering, 47(1), 4757.##Thoenen, T., Hummel, W., Berner, U. and Curti, E. (2014). The PSI/Nagra chemical thermodynamic database 12/07, Paul Scherrer Institute, Villigen PSI, Switzerland. Tixier, R. and Mobasher, B. (2003). "Modeling of damage in cementbased materials subjected to external sulfate attack. I: Formulation", Journal of Materials in Civil Engineering, 15(4), 305313.##Zelic, J., Radovanovic, I. and Jozic, D. (2007). "The effect of silica fume additions on the durability of Portland cement mortars exposed to magnesium sulfate attack", Materials and Technology, 41(2), 9194.##De Weerdt, K., Ben Haha, M., Le Saout, G., Kjellsen, K.O., Justnes, H. and Lothenbach, B. (2011). "Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash", Cement and Concrete Research. 41(3), 279291.##Whittaker, M. and Black, L. (2015). "Current knowledge of external sulfate attack", Advances in Cement Research, 27(9), 532545.##]
1

Analytical Solutions for the Flexural Behavior of Metal Beams Strengthened with Prestressed Unbonded CFRP Plates
https://ceij.ut.ac.ir/article_66128.html
10.7508/ceij.2018.01.006
1
Trapezoidal prestressed unbonded retrofit (TPUR) systems have been recently developed and tested. The authors have already developed a comprehensive and accurate analytical solution for the TPUR system that takes many system parameters into account. The main aim of this paper is to develop a simplified analytical solution for predicting the behavior of metal beams that have been strengthened with the TPUR system. The developed analysis method can be useful to engineers because of its simplicity. An energy approach based on Castigliano’s theorems is used to study the flexural behavior of a steel beam retrofitted with the TPUR system. A parametric study was performed and the comparative results showed that the results using Castigliano’s first theorem are in agreement with the results using the flexibility approach.
0

101
118


Farrokh
Kianmofrad
Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe AZ 85287, USA
United States of America
farrokh.kianmofrad@asu.edu


Elyas
Ghafoori
Empa, Swiss Federal Laboratories for Materials Science and Technology, Structural Engineering Research Laboratory, Dübendorf, Switzerland
Switzerland
elyas.ghafoori@empa.ch


Masoud
Motavalli
Empa, Swiss Federal Laboratories for Materials Science and Technology, Structural Engineering Research Laboratory, Dübendorf, Switzerland
Iran
masoud.motavalli@empa.ch


Mohammad
Rahimian
University of Tehran, School of Civil Engineering, Tehran, Iran
Iran
rahimian@ut.ac.ir
bridges
Energy Method
Flexibility Method
Metallic Beams
Prestressed CFRP Laminates
Strengthening
[AlEmrani, M. and Kliger, R. (2006). "Analysis of interfacial shear stresses in beams strengthened with bonded prestressed laminates", Composites Part B: Engineering, 37(4), 265272.##Aljabar, N.J., Zhao, X.L., AlMahaidi, R., Ghafoori, E., Motavalli, M. and Koay, Y.C. (2017). "Fatigue tests on UHMCFRP strengthened steel plates with central inclined cracks under different damage levels", Composite Structures, 160, 9951001.##Aljabar, N.J., Zhao, X.L., AlMahaidi, R., Ghafoori, E., Motavalli, M. and Powers, N. (2016). "Effect of Crack Orientation on Fatigue Behaviour of CFRP Strengthened Steel Plates", Composite Structures, 152, 295305.##Benachour, A., Benyoucef, S. and Tounsi, A. (2008). "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Engineering Structures, 30(11), 33053315.##Boresi, A.P., Schmidt, R.J. and Sidebottom, O.M. (1993). Advanced mechanics of materials, Wiley New York.##Fernando, D., Schumacher, A., Motavalli, M., Teng, J. G., Yu, T. and Ghafoori, E. (2010). "Fatigue strengthening of cracked steel beams with CFRP plates", ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 271276.##Ghafoori, E. (2013). "Interfacial stresses in beams strengthened with bonded prestressed plates", Engineering Structures, 46, 508510.##Ghafoori, E. (2015). "Fatigue strengthening of metallic members using unbonded and bonded CFRP laminates." PhD Thesis, ETHZurich, (http://dx.doi.org/10.3929/ethza010453130 ).##Ghafoori, E. and Motavalli, M. (2011). "Analytical calculation of stress intensity factor of cracked steel Ibeams with experimental analysis and 3D digital image correlation measurements", Engineering Fracture Mechanics, 78(18), 32263242.##Ghafoori, E. and Motavalli, M. (2013). "Flexural and interfacial behavior of metallic beams strengthened by prestressed bonded plates", Composite Structures, 101, 2234.##Ghafoori, E. and Motavalli, M. (2015a). "Innovative CFRPprestressing system for strengthening metallic structures", Journal of Composites for Construction, 19(6), 04015006.##Ghafoori, E. and Motavalli, M. (2015b). "Lateraltorsional buckling of steel Ibeams retrofitted by bonded and unbonded CFRP laminates with different prestress levels: Experimental and numerical study", Construction and Building Materials, 76, 194206.##Ghafoori, E. and Motavalli, M. (2015c). "Normal, high and ultrahigh modulus CFRP laminates for bonded and unbonded strengthening of steel beams", Materials and Design, 67, 232243.##Ghafoori, E. and Motavalli, M. (2016). "A retrofit theory to prevent fatigue crack initiation in aging riveted bridges using carbon fiberreinforced polymer materials", Polymers, 8, 308.##Ghafoori, E., Motavalli, M., Botsis, J., Herwig, A. and Galli, M. (2012). "Fatigue strengthening of damaged metallic beams using prestressed unbonded and bonded CFRP plates", International Journal of Fatigue, 44, 303315.##Ghafoori, E., Motavalli, M., Nussbaumer, A., Herwig, A., Prinz, G. and Fontana, M. (2015a). "Determination of minimum CFRP prestress levels for fatigue crack prevention in retrofitted metallic beams", Engineering Structures, 84, 29–41.##Ghafoori, E., Motavalli, M., Nussbaumer, A., Herwig, A., Prinz, G.S. and Fontana, M. (2015b). "Design criterion for fatigue strengthening of riveted beams in a 120yearold railway metallic bridge using prestressed CFRP plates", Composites Part B: Engineering, 68, 113.##Ghafoori, E., Motavalli, M., Zhao, X. L., Nussbaumer, A. and Fontana, M. (2015c). "Fatigue design criteria for strengthening metallic beams with bonded CFRP plates." Engineering Structures, 101, 542557.##Ghafoori, E. and Motavalli, M. (2015d). "Innovative CFRPprestressing system for strengthening metallic structures", Journal of Composites for Construction, 19(6), 04015006.##Ghafoori, E., Prinz, G.S., Mayor, E., Nussbaumer, A., Motavalli, M., Herwig, A. and Fontana, M. (2014). "Finittione element analysis for fatigue damage reduction in metallic riveted bridges using prestressed CFRP plates", Polymers, 6(4), 10961118.##Ghafoori, E., Schumacher, A. and Motavalli, M. (2012). "Fatigue behavior of notched steel beams reinforced with bonded CFRP plates: Determination of prestressing level for crack arrest", Engineering Structures, 45, 270283.##Hibbeler, R.C. (2014). Structural analysis, Pearson Education, Inc., Upper Saddle River, New Jersey 07458.##Hosseini, A., Ghafoori, E., Motavalli, M. and Nussbaumer, A. (2016). "Stress analysis of unbonded and bonded prestressed CFRPstrengthened steel plates", 8th International Conference on Fiber Reinforced Polymer (FRP) Composites in Civil Engineering (CICE2016), 1416 December 2016, Hong Kong, China.##Huawen, Y., König, C., Ummenhofer, T., Shizhong, Q. and Plum, R. (2010). "Fatigue performance of tension steel plates strengthened with prestressed CFRP laminates", Journal of Composites for Construction, 14(5), 609615.##Kerboua, B. and Benmoussat, A. (2011). "Strengthening of damaged structures with bonded prestressed FRP composites plates: An improved theoretical solution", Journal of Composite Materials, 45(5), 499512.##Kianmofrad, F., Ghafoori, E., Elyasi, M.M., Motavalli, M. and Rahimian, M. (2017). "Strengthening of metallic beams with different types of prestressed unbonded retrofit systems", Composite Structures, 159, 8195.##Park, S., Kim, T., Kim, K. and Hong, S.N. (2010). "Flexural behavior of steel Ibeam prestressed with externally unbonded tendons", Journal of Constructional Steel Research, 66(1), 125132.##Ponnada, M.R. and Vipparthy, R. (2013). "Improved Method of Estimating Deflection in Prestressed Steel IBeams", Asian Journal of Civil Engineering (BHRC), 14(5), 765772.##Rahimian, M. and Ghorbani Tanha, A.K. (2002). Strutural analysis, Sanjesh, Tehran, Iran, (in Persian).##Rashid Dadash, P. and Ramezanianpour, A.A. (2014). "Hybrid fiber reinforced concrete containing pumice and metakaolin", Civil Engineering Infrastructures Journal, 47(2), 229238.##Saleh Jalali, R. and Shadafza, E. (2016). "The elastic modulus of steel fiber reinforced concrete (SFRC) with random distribution of aggregate and fiber", Civil Engineering Infrastructures Journal, 49(1), 2132.##Schnerch, D. and Rizkalla, S. (2008). "Flexural strengthening of steel bridges with high modulus CFRP strips", Journal of Bridge Engineering, 13(2), 192201.##Soranakom, C. and Mobasher, B. (2007). "Closedform solutions for flexural response of fiberreinforced concrete beams", Journal of Engineering Mechanics, 133(8), 933941.##Täljsten, B., Hansen, C.S. and Schmidt, J.W. (2009). "Strengthening of old metallic structures in fatigue with prestressed and nonprestressed CFRP laminates", Construction and Building Materials, 23(4), 16651677.##Tavakkolizadeh, M. and Saadatmanesh, H. (2003). "Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch", Journal of Structural Engineering, 129(2), 186196.##Timoshenko, S.P. and Young, D.H. (1965). Theory of structures, McGrawHill, New York.##U.S. Department of Transportation. (1986). "Highway bridge replacement and rehabilitation program", Federal Highway Administration, Bridge Division Office of Engineering.##]
1

Evaluation of Hybrid Fiber Reinforced Concrete Exposed to Severe Environmental Conditions
https://ceij.ut.ac.ir/article_66129.html
10.7508/ceij.2018.01.007
1
Hybrid fiber reinforced concrete (HFRC) consisting of two or more different types of fibers has been widely investigated because of its superior mechanical properties. In the present study, the effect of the addition of steel (0.25%, 0.5%, 0.75%, and 1% of concrete volume) and Polypropylene (0.2%, 0.4%, and 0.6% of concrete volume) fibers on the surface scaling resistance of concrete, depth of penetration of water, and compressive strength of concrete is investigated. The permeability test is conducted for all the specimens to measure the depth of penetration of water under pressure. Moreover, scaling resistance of concrete subjected to freezing and thawing cycles in the presence of salt solution is assessed to simulate the durability of concrete under field exposure conditions. The results showed that the addition of fibers increases the permeability of concrete. However, it enhances the scaling resistance and compressive strength of concrete. The mixture containing 0.4% of Polypropylene (PP) fibers and 0.75% of steel fibers demonstrated the highest scaling resistance since the scaled materials in this mixture were almost half weight of the materials scaled from the control mixture after 84 cycles of freezing and thawing. Increasing the scaling resistance of concrete leads to a better longterm serviceability performance of HFRC compared to plain concrete, making these composites a great choice for application in environments exposed to cold weather.
0

119
130


A.R.
Ramezani
Department of civil engineering, Ferdowsi university of Mashhad, Mashhad, Iran
Iran
ahmad91@yahoo.com


M. R.
Esfahani
Department of civil engineering, Ferdowsi university of Mashhad, Mashhad, Iran
Iran
esfahani@um.ac.ir
Hybrid Fiber Reinforced Concrete
Permeability
PP Fibers
Scaling Resistance
Steel Fibers
[Balaguru, P., Narahari, R. and Patel, M. (1992). “Flexural toughness of steel fiber reinforced concrete”, International Concrete Abstracts Portal, 89(6), 541546.##Belletti, B. and Cerioni, R. (2008). “Design aspects on steel fiberreinforced concrete pavements”, Materials in Civil Engineering, 20(9), 599607.##Berkowski, P. and KosiorKazberuk, M. (2015). “Effect of fiber on the concrete resistance to surface scaling due to cyclic freezing and thawing”, Procedia Engineering, 111, 121127.##Cantin, R. and Pigeon, M. (1996). “Deicer salt scaling resistance of steelfiberreinforced concrete”, Cement and Concrete Research, 26(11), 16391648.##Fang, H., Zou, F., Liu, W., Wu, Ch., Bai, Y. and Hui, D. (2017). “Mechanical performance of concrete pavement reinforced by CFRP grids for bridge deck applications”, Composites Part B: Engineering, 110, 315335.##Hsie, M., Tu, C. and Song, P.S. (2008). “Mechanical properties of polypropylene hybrid fiberreinforced concrete”, Materials Science and Engineering: A, 494, 153157.##Islam, G. and Gupta, S. (2016). “Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete”, International Journal of Sustainable Built Environment, 5, 345354.##Kosmatka, S.H., Kerkhoff, B. and Panarese, W.C. (2003). Design and control of concrete mixtures, Portland Cement Association.##Miloud, B. (2005). “Permeability and porosity characteristics of steel fiber reinforced concrete”, Asian Journal of Civil Engineering (Building and Housing), 6(4), 317330.##Mohod, M. and Kadam, K. (2016). “Behavior of polypropylene fibre reinforced concrete pavement under static wheel load”, Sixth International Congress on Computational Mechanics and Simulation, India.##Mulheron, M., Kevern, J. and Rupnow, D. (2015). “Laboratory fatigue and toughness evaluation of fiberreinforced concrete”, Transportation Research Record, 2508, 3947.##Nili, M. and Zaheri, M. (2011). “Deicer saltscaling resistance of nonairentrained rollercompacted concrete pavements”, Construction and Building Materials, 25, 16711676.##Niu, D., Jiang, L. and Bai, M. (2013). “Study of the performance of steel fiber reinforced concrete to water and salt freezing condition”, Materials and Design, 44, 267273.##Okay, F. and Engin, S. (2012). “Torsional behavior of steel fiber reinforced concrete beams”, Construction and Building Materials, 28(1), 269275.##Quanbing, Y. and Beirong, Z. (2005). “Effect of steel fiber on the deicerscaling resistance of concrete”, Cement and Concrete Research, 35, 23602363.##Penteado, D. and Thaumaturgo, C. (2005). “Fracture toughness of geopolymeric concretes reinforced with basalt fibers”, Cement and Concrete Composites, 27, 4954.##Pigeon, M., Pleau, R. and Azzabi, M. (1996). “Durability of MicrofiberReinforced Mortars”, Cement and Concrete Research, 26(4), 601609.##Rao, T.P., Mo, Y.L., Hsu, T.C. and Vogel, J. (2009). “Mechanical properties of steel fiber reinforced concrete beams”, Structures Congress, United States.##Rashid Dadash, P. and Ramezanianpour, A.A. (2014). “Hybrid fiber reinforced concrete containing pumice and metakaolin”, Civil Engineering Infrastructures Journal, 47(2), 229238.##Shadafza, E. and Jalali, R. (2016). “The elastic modulus of steel fiber reinforced concrete (SFRC) with random distribution of aggregate and fiber”, Civil Engineering Infrastructures Journal, 49(1), 2132.##Singh, A. (2013). “Strength and permeability characteristics of steel fiber reinforced concrete”, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 7(10), 733738.##Sun, W., Chen, H., Luo, X. and Qian, H. (2001). “The effect of hybrid fibers and expansive agent on the shrinkage and permeability of highperformance concrete”, Cement and Concrete Research, 31, 595601.##Taherkhani, H. (2016). “Investigating the effects of nanoclay and nylon fibers on the mechanical properties of asphalt concrete”, Civil Engineering Infrastructures Journal, 49(2), 235249.##Tan, K.H., Murugappan, K. and Paramasivam, P. (1993). “Shear behavior of steel fiber reinforced concrete beams”, International Concrete Abstracts Portal, 90(1), 311.##Thomas, J. and Ramaswamy, A. (2007). “Mechanical Properties of Steel FiberReinforced Concrete”, 19(5), 385392.##Yener, E. and Hinisliolu, S. (2011). “The effects of silica fume and fly ash on the scaling resistance and flexural strength of pavement concretes”, Road Materials and Pavement Design, 12, 177194.##Zhang, P. and Li, Q. (2013). “Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume”, Composites Part B: Engineering, 45, 15871594.##]
1

Permeability of Two Clayey Soils Exposed to Petroleum Products and Organic Solvents
https://ceij.ut.ac.ir/article_66130.html
10.7508/ceij.2018.01.008
1
Clayey soils are the most common material used for water sealing and undertake an important role in controlling landfillrelated pollution. Organic liquids can adversely affect the effectiveness of clay liners by drastically increasing their hydraulic conductivity. The aim of this study is to investigate and compare the permeability in two types of clay with different plasticity, exposed to the flow of kerosene and diesel as nonpolar immiscible liquids and ethanol as a miscible liquid with an intermediate dielectric constant. The effects of plasticity and water content for a given compactive effort are also investigated. Two different clayey soils with different plasticity were provided and their physical properties determined. Next, modified constanthead permeability tests were conducted on the samples. Results show that the lower dielectric constant of the organic fluids, leads to an increase in hydraulic conductivity. Research has shown that organic fluids shrink the diffuse double layer due to their lower dielectric constant and reduce its thickness. Shrinkage of the double layer leads to higher permeability and lower plasticity in the soil. As a result, the void space for the passage of the fluid increases. With the decrease the dielectric constant from 80.1 to 1.8, permeability is increased up to 1800 times. On the other hand, results show that for a clay with a higher liquid limit and plastic limit, permeability for all the liquids investigated in the research is lower.
0

131
146


Mehran
KarimpourFard
Department of Civil Engineering, Faculty of Engineering, University of Guilan
Iran
karimpour_mehran@iust.ac.ir


Roghayeh
Alimohammadijelodar
Faculty of Engineering, University of Guilan, Rasht, Iran
Iran
arezo_mohamady68@yahoo.com
Atterberg limits
Clay Soil
Dielectric Constant
Permeability
Plasticity
[Abdi, M.R. and Parsapazhouh, A. (2010). "Use of Bentonite and lime for decreasing the permeability of liner and cover in landfills", Civil Engineering Infrastructures Journal, 43(1), 6170.##AhangarAsr, A., Faramarzi, A., Mottaghifard, N. and Javadi, A.A. (2011). "Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression", Computers and Geosciences, 37(11), 18601869.##Amarasinghe, P.M., Katti, K.S. and Katti, D.R. (2012). "Insight into role of clayfluid molecular interactions on permeability and consolidation behavior of Namontmorillonite swelling clay", Journal of Geotechnical and Geoenvironmental Engineering, 138(2), 138146.##Balaban, R.D.C., Vidal, E.L.F. and Borges, M.R. (2015). "Design of experiments to evaluate clay swelling inhibition by different combinations of organic compounds and inorganic salts for application in water base drilling fluids", Applied Clay Science, 106, 124130.##Benson, C.H. and Daniel, D.E. (1990). "Influence of clods on hydraulic conductivity of compacted clay", Journal of Geotechnical Engineering, ASCE, 116(8), 12311248.##Benson, C.H. and Trast, J.M. (1995). "Hydraulic conductivity of thirteen compacted clays", Clays and Clay Minerals, 43(6), 669681.##Bolt, G.H. (1956). "Physicochemical analysis of the compressibility of pure clays", Géotechnique, 6(2), 8693.##Chen, W.C. and Huang, W.H. (2013). "Effect of groundwater chemistry on the swelling behavior of a Cabentonite for deep geological repository", Physics and Chemistry of the Earth, 65, 4249.##Cui, S.L., Zhang, H.Y. and Zhang, M. (2012). "Swelling characteristics of compacted GMZ bentonite–sand mixtures as a buffer/backfill material in China", Engineering Geology, 141, 6573.##Fernandez, F. and Quigly, R.M. (1985). "Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons", Canadian Geotechnical Journal, 22(2), 205214.##Fernandez, F. and Quigly, R.M. (1988). "Viscosity and dielectric constant controls on the hydraulic conductivity of clayey soils permeated with water soluble organics", Canadian Geotechnical Journal, 25(3), 582589.##Gilligan, E.D. (1983). "The effect of organic pore fluids on the fabric and geotechnical behavior of clays", PhD Thesis, Syracuse University.##Gilligan, E.D. and Clemence, S.P. (1984). "Fabric and engineering behavior of organicsaturated clays", Bulletin of the Association of the Engineering Geologists, 21, 515529.##Goodarzi, A.R. and Akbari, H.R. (2014). "Assessing the anion type effect on the hydromechanical properties of smectite from macro and microstructure aspects", Geomechanics and Engineering, 7(2), 183200.##Goodarzi, A.R., Najafi Fateh, S. and Shekary, H. (2016). "Impact of organic pollutants on the macro and microstructure responses of Nabentonite", Applied Clay Science 121122, 1728.##Lambe, T.W. (1955). "The permeability of compacted finegrained soils", ASTM, Special Technical Publication, 163, 5567.##Liang, H., Long, Z., Yang, S. and Dai, L. (2015). "Organic modification of bentonite and its effect on rheological properties of paper coating", Applied Clay Science, 104, 106109.##Machado, S.L., da Silva Paes Cardoso, L., de Oliveira, I.B., de Faria Mariz, D. and KarimpourFard, M. (2016). "Modeling soil permeability when percolated by different soil", Transport in Porous Media, 111(3), 763793.##Mesri, G. and Olson, R.E. (1971). "Mechanisms controlling the permeability of clays", Clays and Clay Minerals, 19(3), 151158.##Mishra, A.K., Ohtsubo, M., Li, L. and Higashi, T. (2011). "Controlling factors of the swelling of various bentonites and their correlations with the hydraulic conductivity of soilbentonite mixtures", Applied Clay Science, 52(12), 7884.##Mitchell, J.K. (1976). Fundamentals of soil behavior, John Wiley & Sons, New York.##Mitchell, J.K., Hooper, D. and Campanella, R. (1965). "Permeability of compacted clay", Journal of Soil Mechanics and Foundations Division, ASCE, 91(4), 4165.##Mitchell, J.K. and Soga, K. (2005). Fundamentals of soil behavior, John Wiley & Sons, New Jersey.##Mosavat, N. and Nalbantoglu, Z. (2013). "The impact of hazardous waste leachate on performance of clay liners", Waste Management and Research, 2(31), 194202.##Mousavi, S.E. and Wong, L.S. (2016). "Permeability characteristics of compacted and stabilized clay with cement, peat ash and silica sand", Civil Engineering Infrastructures Journal, 49(1), 149164.##Olgun, M. and Yildiz, M. (2012). "Influence of acid acetic on structural change and shear strength of clays", Iranian Journal of Science and Technology, 36(1), 2538.##Park, A.A. and L. Fan. (2007). "Electrostatic charging phenomenon in gas–liquid–solid flow systems", Chemical Engineering Science, 62(12), 371386.##Qiang, X., Haijun, L., Zhenze, L. and Lei, L. (2014). "Cracking, water permeability and deformation of compacted clay liners improved by straw fiber", Engineering Geology, 178, 8290.##Siddiqua, S., Blatz, J. and Siemens, G. (2011). "Evaluation of the impact of pore fluid chemistry on the hydromechanical behavior of claybased sealing materials", Canadian Geotechnical Journal, 48(2), 199213.##Spagnoli, G., Stanjek, H. and Sridharan, A. (2012). "Influence of ethanol/water mixture on the undrained shear strength of pure clays", Bulletin of Engineering Geology and the Environment, 71(2), 389398.##Van Olphen, H. (1963). "Compaction of clay sediments in the range, of molecular particle distances", Proceedings of the 11th National Conference of Clays and Clay Minerals, MacMillan Company, New York.##Van Olphen, H. (1991). An introduction to clay colloid chemistry: for clay technologists, geologists, and soil scientists, Krieger, Marabal, Florida.##Zhu, C.M., Ye, W.M., Chen, Y.G., Chen, B. and Cui, Y.J. (2013). "Inﬂuence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite", Engineering Geology, 166, 7480.##]
1

A Superelastic Retrofitting Method for Mitigating the Effects of Seismic Excitations on Irregular Bridges
https://ceij.ut.ac.ir/article_66131.html
10.7508/ceij.2018.01.009
1
Irregularities in bridge pier stiffness concentrate the ductility demand on short piers; while not operating on the longer and more flexible ones. The existence of nonuniform, ductility demand distribution in bridges significantly influences seismic response. As such, this paper proposes a new approach for balancing the ductility demand in irregular bridges by utilizing shape memory alloys (SMAs). An irregular, single column bent viaduct with unequal pier heights is modeled and used as a reference bridge. To enhance seismic behavior of the bridge, a fixed bearing at the top of the short pier is replaced by a sliding bearing and two groups of SMA bars. SMAs are designed to keep their maximum strain within the superelastic range. The seismic response of the controlled bridge is compared with a reference bridge through parametric studies using a set of suitable ground motion records. Study parameters include SMA lengths, short pier reinforcement ratios, design strain of SMA elements, and the heights of the medium and long piers. The proposed method successfully reduced the response of the short pier and, hence, improved the overall seismic behavior.
0

147
168


Dr. Mehdi
Ghassemieh
Department of Civil Engineering, BuAli Sina University, fahmideh st, 6517838695 Hamedan, Iran
Iran
mghassem@ut.ac.ir


Seyed Mohyedin
Ghodratian
School of civil engineering, Sharif University
Iran
ghodratian_sm@mehr.sharif.ir


Mohammad
Khanmohmmadi
School of Civil Engineering, University of Tehran
Iran
mkhan@ut.ac.ir


Mahmoud
Baei
School of Civil Engineering, University of Tehran
Iran
m.baei@ut.ac.ir
Bridge
Ductility Demand
energy dissipation
Irregularity
Seismic Response
Shape Memory Alloy (SMA)
[Alvandi, S. and Ghassemieh, M., (2014), “Seismic evaluation of base isolated system equipped with Shape memory alloys”, Advanced Materials Research, 831, 110114.##American Association of State Highway and Transportation Officials (2007). AASHTO, AASHTO LRFD Bridge Design Specifications, Washington, DC.##Aryan, H. and Ghassemieh, M., (2014). “Mitigation of vertical and horizontal seismic excitations on bridges utilizing shape memory alloy system”, Advanced Materials Research, 831, 9094.##Aryan, H. and Ghassemieh, M. (2015). “Seismic enhancement of multispan continuous bridges subjected to threedirectional excitations”, Smart Materials and Structures, 24(4), 45030.##Aryan, H. and Ghassemieh, M. (2017). “A superelastic protective technique for mitigating the effects of vertical and horizontal seismic excitations on highway bridges”, Journal of Intelligent Material Systems and Structures, 28(12), 15331552.##Baker, J.W., Lin, T., Shahi, S.K. and Jayaram, N. (2011). New ground motion selection procedures and selected motions for the PEER transportation research program, Pacific Earthquake Engineering Research Center.##Brocca, M., Brinson, L.C. and Bazant, Z.P. (2002). “Threedimensional Constitutive Model for Shape Memory Alloys Based on Microplane Model” Journal of Mechanics and Physics of Solids, 50, 10511077.##Calvi, G.M. and Pinto, P.E. (1994). “Seismic design of bridges: experimental and analytical research”, Proceedings of the 10th European Conference on Earthquake Engineering, pp. 28992904.##Farmani, M.A. and Ghassemieh, M. (2016). “Shape memory alloybased moment connections with superior selfcentering properties”, Smart Materials and Structures, 25(7), 075028.##Farmani, M.A. and Ghassemieh, M. (2017). “Steel beamtocolumn connections equipped with SMA tendons and energy dissipating devices including shear tabs or web hourglass pins”, Journal of Steel Constructional Research, 135, 3048.##Federation Internationale du Beton (FIB) (2007). Seismic bridge design and retrofit—structural solutions, FIB Bulletin 39.##FEMA (2009), Quantification of Building Seismic Performance Factors (FEMA P695). Prepared by the Applied Technology Council for the Federal Emergency Management Agency Washington, DC.##Ghassemieh, M., Bahari, M.R., Ghodratian, S.M. and Nojoumi, S.A. (2012). “Improvement of concrete shear wall structures by smart materials”, Open Journal of Civil Engineering,2, 8795.##Ghassemieh, M., Ghodratian, S.M., Bahari, M.R. and Nojoumi, S.A. (2013). “Seismic enhancement of coupled shear walls using shape memory alloys”, Journal of Civil Engineering and Science, 2(2), 93101.##Ghassemieh, M., Mostafazadeh, M. and Sadeh, M.S. (2012). “Seismic control of concrete shear wall using shape memory alloys”, Journal of Intelligent Material Systems and Structures, 23(5), 535543.##Ghassemieh, M., Rezapour, M. and Sadeghi, V. (2017). “Effectiveness of the shape memory alloy reinforcement in concrete coupled shear walls”, Journal of Intelligent Material Systems and Structures, 28(5), 640652.##Guo, A., Zhao, Q. and Li, H. (2012). “Experimental study of a highway bridge with shape memory alloy restrainers focusing on the mitigation of unseating and pounding”, Earthquake Engineering and Engineering Vibration, 11(2), 195–204.##Han, Y.L., Yin, H.Y., Xiao, E.T., Sun, Z.L. and Li, A.Q. (2006). “A kind of NiTiwire shape memory alloy damper to simultaneously damp tension, compression and torsion”, Structural Engineering and Mechanics, 22(2), 241262.##Isaković, T. and Fischinger, M. (2006). “Higher modes in simplified inelastic seismic analysis of single column bent viaducts”, Earthquake engineering & structural dynamics, 35(1), 95114.##Isaković, T., Lazaro, M.P.N. and Fischinger, M. (2008). “Applicability of pushover methods for the seismic analysis of singlecolumn bent viaducts”, Earthquake Engineering and Structural Dynamics, 37(8), 11851202.##Johnson, R., Padgett, J.E., Maragakis, M.E., DesRoches, R. and Saiidi, M.S. (2008). “Large scale testing of nitinol shape memory alloy devices for retrofitting of bridges”, Smart Materials and Structures, 17(3), 035018.##Kappos, A.J., Manolis, G.D. and Moschonas, I.F. (2002). “Seismic assessment and design of R/C bridges with irregular configuration, including SSI effects”, Engineering Structures, 24(10), 13371348.##McKenna, (2011). “OpenSees: a framework for earthquake engineering simulation”, Computing in Science and Engineering, 13(4), 5866.##Motahari, S.A., Ghassemieh, M. and Abolmaali, S.A. (2007). “Implementation of shape memory alloy dampers for passive control of structures subjected to seismic excitations”, Journal of Constructional Steel Research, 63(12), 15701579.##Ozbulut, O.E. and Hurlebaus, S. (2011). “Seismic assessment of bridge structures isolated by a shape memory alloy/rubberbased isolation system”, Smart Materials and Structures, 20(1), 015003.##Pinto, A.V., Verzeletti, G., Magonette, G., Pegon, P., Negro, P. and Guedes, J. (1996). “Pseudodynamic testing of largescale R/C bridges in ELSA”, 11th World Conference on Earthquake Engineering, pp. 2328.##Roh, H., Reinhorn, A.M. and Lee, J.S. (2012). “Modeling and cyclic behavior of segmental bridge column connected with shape memory alloy bars”, Earthquake Engineering and Engineering Vibration, 11(3), 375389.##Saiidi, M.S. and Wang, H. (2006). “Exploratory study of seismic response of concrete columns with shape memory alloys reinforcement”, ACI Structural Journal, 103(3), 436443.##Sharabash, A.M. and Andrawes, B.O. (2009). “Application of shape memory alloy dampers in the seismic control of cablestayed bridges”, Engineering Structures, 31(2), 607616.##Shrestha, K.C., Araki, Y., Nagae, T., Omori, T., Sutou, Y., Kainuma, R. and Ishida, K. (2011). “Applicability of CuAlMn shape memory alloy bars to retrofitting of historical masonry constructions”, Earthquakes and Structures, 2(3), 233256.##]
1

Analytical D’Alembert Series Solution for MultiLayered OneDimensional Elastic Wave Propagation with the Use of General Dirichlet Series
https://ceij.ut.ac.ir/article_66132.html
10.7508/ceij.2018.01.010
1
A general initialboundary value problem of onedimensional transient wave propagation in a multilayered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complexvalued functions in the Laplace domain in the form of general Dirichlet series is used. The final solutions are presented in the form of finite series involving forward and backward travelling wave functions of the d’Alembert type for a finite time interval. This elegant method of Laplace transform inversion used for the special class of problems at hand eliminates the need for finding singularities of the complexvalued functions in the Laplace domain and it does not need utilising the tedious calculations of the more conventional methods which use complex integration on the Bromwich contour and the techniques of residue calculus. Justification for the solutions is then considered. Some illustrations of the exact solutions as timehistories of stress or displacement of different points in the medium due to excitations of arbitrary form or of impulsive nature are presented to further investigate and interpret the mathematical solutions. It is shown via illustrations that the onedimensional wave motions in multilayered elastic media are generally of complicated forms and are affected significantly by the changes in the geometrical and mechanical properties of the layers as well as the nature of the excitation functions. The method presented here can readily be extended for threedimensional problems. It is also particularly useful in seismology and earthquake engineering since the exact timehistories of response in a multilayered medium due to arbitrary excitations can be obtained as finite sums.
0

169
198


Mohamad
Emami
School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Iran
mohamad.emami@ut.ac.ir


Morteza
EskandariGhadi
School of Civil Engineering, College of Engineering, University of Tehran, I.R. Iran.
Iran
ghadi@ut.ac.ir
Analytical D’alembert Solution
General Dirichlet Series
Inverse Laplace Transform
MultiLayered
OneDimensional
Wave Propagation
[Achenbach, J.D., (1975). Wave propagation in elastic solids, Applied Mathematics and Mechanics, Vol. 16,Amsterdam: NorthHolland, Elsevier Science Publishers.##Achenbach, J. D., Hemann, J. H. and Ziegler, F., (1968). "Tensile failure of interface bonds in a composite body subjected to compressive loads", AIAA Journal (The American Institute of Aeronautics and Astronautics), 6(10), 20402043.##Ahlfors, L. V., (1966). Complex analysis, International Series in Pure and Applied Mathematics, Second Edition, McGrawHill, Inc.##Apostol, T. M., (1974). Mathematical analysis. Second Edition. AddisonWesley Publishing Company, Inc.##ArdeshirBehrestaghi, A., EskandariGhadi, M. and VaseghiAmiri, J., (2013). "Analytical solution for a twolayer transversely isotropic halfspace affected by an arbitrary shape dynamic surface load", Civil Engineering Infrastructures Journal, 46(1), 114.##Beddoe, B., (1966). "Vibration of a sectionally uniform string from an initial state", Journal of Sound and Vibration, 4(2), 215223.##Berlyand, L. and Burridge, R., (1995). "The accuracy of the O'DohertyAnstey Approximation for wave propagation in highly disordered stratified media", Wave Motion, 21(4), 357373.##Boström, A., (2000). "On wave equations for elastic rods", ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 80(4), 24551.##Brown, J.W. and Churchill, R.V., (2012). Fourier series and boundary value problems, Eight Edition, McGrawHill, Inc.##Bruck, H.A., (2000). A onedimensional model for designing functionally graded materials to manage stress waves", International Journal of Solids and Structures, 37(44), 63836395.##Burridge, R. (1988). "Onedimensional wave propagation in a highly discontinuous medium", Wave Motion, 10(1), 1944.##Cheshmehkani, S. and EskandariGhadi, M. (2017). "Threedimensional dynamic ring load and point load Green's functions for continuously inhomogeneous viscoelastic transversely isotropic halfspace", Engineering Analysis with Boundary Elements, 76, 1025.##Cheung, Y.K., Tham, L.G. and Lei, Z.X. (1995). "Transient response of single piles under horizontal excitations", Earthquake Engineering and Structural Dynamics, 24(7), 10171038.##Chiu, T.C. and Erdogan, F. (1999). "Onedimensional wave propagation in a functionally graded elastic medium", Journal of Sound and Vibration, 222(3), 453487.##Churchill, R.V. (1936). "Temperature distribution in a slab of two layers", Duke Math Journal, 2(1), 405414.##Churchill, R.V. (1937). "The inversion of Laplace transformation by a direct expansion in series and its application to boundaryvalue problems", Mathematische Zeitschrift, 42(1), 567579.##Churchill, R.V. (1958). Operational mathematics, Second Edition, McGrawHill.##Cohen, A.M. (2007). Numerical methods for Laplace transform inversion, Springer.##De Hoop, A.T. (1960). "A modification of Cagniard's method for solving seismic pulse problems", Applied Scientific Research, Section B, 8(1), 349356.##Duffy, D.G. (1993). 'On the numerical inversion of Laplace transforms: Comparison of three new methods on characteristic problems from applications", ACM Transactions on Mathematical Software (TOMS), 19(3), 333359.##Durbin, F. (1974). Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method" The Computer Journal, 17(4), 371376.##EskandariGhadi, M., Hassanpour Charmhini, A. and ArdeshirBehrestaghi, A. (2014). "A method of function space for vertical impedance function of a circular rigid foundation on a transversely isotropic ground", Civil Engineering Infrastructures Journal, 47(1), 1327.##EskandariGhadi, M., Rahimian, M., Mahmoodi, A. and ArdeshirBehrestaghi, A. (2013). "Analytical solution for twodimensional coupled thermoelastodynamics in a cylinder", Civil Engineering Infrastructures Journal, 46(2), 107123.##EskandariGhadi, M. and Sattar, S. (2009). "Axisymmetric transient waves in transversely isotropic halfspace", Soil Dynamics and Earthquake Engineering, 29, 347355.##Hardy, G.H. (1915). The general theory of Dirichlet's series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 18,Cambridge: Cambridge University Press.##Hassani, S., (2013). Mathematical physics: A modern introduction to its foundations, 2nd Edition, Springer International Publishing Switzerland.##Kobayashi, M.H. and Genest, R. (2014). "On an extension of the d’Alembert solution to initial–boundary value problems in multilayered, multimaterial domains", Wave Motion, 51(5), 768784.##Kreyszig, E. (2011). Advanced engineering mathematics, Tenth Edition, John Wiley & Sons, Inc.##Lang, S. (1999). Complex analysis, Graduate Texts in Mathematics, 103, Fourth Edition, Springer.##Lin, W.H. and Daraio, C. (2016). Wave propagation in onedimensional microscopic granular chains", Physical Review E, 94(5), 052907(16).##Macaulay, W.H. (1919). "Note on the deflection of beams. The Messenger of Mathematics, 48, 129130.##O'Doherty, R.F. and Anstey, N.A. (1971). "Reflections on amplitudes", Geophysical Prospecting, 19(3), 430458.##Ponge, M.F. and Croënne, C. (2016). "Control of elastic wave propagation in onedimensional piezomagnetic phononic crystals, The Journal of the Acoustical Society of America, 139(6), 32883295.##Raoofian Naeeni, M. and EskandariGhadi, M. (2016). "A potential method for body and surface wave propagation in transversely isotropic half and fullspaces", Civil Engineering Infrastructures Journal, 49(2), 263288.##Raoofian Naeeni, M. and EskandariGhadi, M. (2016). "Analytical solution of the asymmetric transient wave in a transversely isotropic halfspace due to both buried and surface impulses", Soil Dynamics and Earthquake Engineering, 81, 4257.##Shafiei, M. and Khaji, N. (2015). "An adaptive physicsbased method for the solution of onedimensional wave motion problems", Civil Engineering Infrastructures Journal, 48(2), 217234.##Sneddon, I.N. (1995). Fourier transforms, New York: Dover Publications, Inc., (reprinted).##Thambiratnam, D.P. (1986). "Transient waves in a rod subjected to impulsive end loading", Earthquake Engineering and Structural Dynamics, 14(3), 475485.##Van Der Hijden, J.H. (2016). Propagation of transient elastic waves in stratified anisotropic media, Applied Mathematics and Mechanics, Vol. 32,Amsterdam: NorthHolland, Elsevier Science Publishers.##Weinberger, H.F., (1995). A first course in partial differential equations with complex variables and transform methods, New York: Dover Publications, Inc. (reprinted).##Yang, H. and Yin, X. (2015). "Transient responses of girder bridges with vertical poundings under near‐fault vertical earthquake", Earthquake Engineering & Structural Dynamics, 44(15), 26372657.##Yang, K. (2008). "A unified solution for longitudinal wave propagation in an elastic rod", Journal of Sound and Vibration, 314(1), 307329.##]
1

Seismic Behavior and Dissipated Plastic Energy of PerformanceBasedDesigned HighRise Concrete Structures with Considering Soil–Structure Interaction Effect
https://ceij.ut.ac.ir/article_66133.html
10.7508/ceij.2018.01.011
1
Since the structure and foundation are built on soil, the soil is the major platform by which seismic vibrations are transmitted to the structure, and has noticeable effects on the response and behavior of structure during earthquakes. In this research, the recently introduced Performancebased plastic design (PBPD) and its modified Performancebased plastic design (MPBPD) method in which soil and structure interaction effect has been considered underwent the seismic evaluation. In order to do evaluation, a twentyfloor concrete structure with MPBPD method and conventional PBPD was designed and analyzed in accordance with the time history of the 22 farfield quake records. In this study, cone model is employed for modeling the soil and foundation. With a detailed threedimensional finite element model of a twentystory highrise structure constructed and exploited in the OpenSees software, it is attempted to consider a more realistic behavior of the structure. The results of six related parameters with the maximum response of the structure demonstrate the efficiency and performance of the MPBPD method for the purpose of considering the SSI effect, compared with the conventional method of PBPD. The Results show that, in the MPBPD design method, maximum displacement, acceleration, interstory drift and shear force dropped leading to a better distribution of energy in the structure compared to the PBPD method.
0

199
215


Hamid
Mortezaie
Department of Civil Engineering, BuAli Sina University, fahmideh st, 6517838695 Hamedan, Iran
Iran
hamid.mortezaie@gmail.com


Freydoon
Rezaie
Department of Civil Engineering, BuAli Sina University, fahmideh st, 6517838695 Hamedan, Iran
Iran
freydoon.rezaie@gmail.com
PerformanceBased Plastic Design (PBPD)
Reinforcement Concrete Structure
Seismic Energy Dissipated
SoilStructure Interaction (SSI)
Special Moment Frames
[Abdollahzadeh, G. and Mirzagoltabar, A. (2017). "Performancebased plastic design of moment framesteel plate shear wall as a dual system", Civil Engineering Infrastructures Journal, 50(1), 2134.##Alavi, A., Castiglioni, C.A. and Brambilla, G. (2017). "Behaviour factor evaluation of moment resisting frames having dissipative elements", CE/Papers, Special Issue: Proceedings of Eurosteel 2017, 1(23), 34243433.##ASCE. (2010). Minimum design loads for buildings and other structures: ASCE standard 710, American Society of Civil Engineers.##Aschheim, M. and Black, E.F. (2000). "Yield point spectra for seismic design and rehabilitation", Earthquake Spectra, 16(2), 317336.##Bai, J., Yang, T. and Ou, J. (2018). "Improved performancebased plastic design for RC moment resisting frames: Development and a comparative case study", International Journal of Structural Stability and Dynamics, 18(4), 1850050.##Englekirk, R.E. (2003). Seismic design of reinforced and precast concrete buildings, John Wiley & Sons.##Fajfar, P. (2000). "A nonlinear analysis method for performancebased seismic design", Earthquake Spectra, 16(3), 573592.##Fatahi, B., Tabatabaiefar, H.R. and Samali, B. (2011). "Performance based assessment of dynamic soilstructure interaction effects on seismic response of building frames", In GeoRisk 2011: Risk Assessment and Management,344351.##FEMA, F. (2009). P695quantification of building seismic performance factors, Federal Emergency Management Agency (FEMA).##Freeman, S.A. (2004). "Review of the development of the capacity spectrum method", ISET Journal of Earthquake Technology, 41(1), 113.##Goel, S.C. and Chao, S.H. (2008). Performancebased plastic design: Earthquakeresistant steel structures, International Code Council, Country Club Hills, IL.##Ibarra, L.F., Medina, R.A. and Krawinkler, H. (2005). "Hysteretic models that incorporate strength and stiffness deterioration", Earthquake Engineering and Structural Dynamics, 34(12), 14891511.##Liao, W.C., Hsieh, Y.H.C. and Goel, C.S. (2017). "Seismic evaluation and collapse prediction of RC moment frame structures by using energy balance concept", Journal of Vibroengineering, 19(7), 52685277.##Lin, T., Haselton, C.B. and Baker, J.W. (2013). "Conditional spectrum‐based ground motion selection, Part I: Hazard consistency for risk‐based assessments", Earthquake Engineering and Structural Dynamics, 42(12), 18471865.##Lou, M., Wang, H., Chen, X. and Zhai, Y. (2011). "Structure–soil–structure interaction: Literature review", Soil Dynamics and Earthquake Engineering, 31(12), 17241731.##Mortezaie, H. and Rezaie, F. (2018). "Effect of soil in controlling the seismic response of threedimensional PBPD highrise concrete structures", Structural Engineering and Mechanics, 66(2), 217227.##Panagiotou, M. (2008). "Seismic design, testing and analysis of reinforced concrete wall buildings", ProQuest, University of California, San Diego.##Poulos, H.G. and Davis, E.H. (1980). Pile foundation analysis and design, Wiley & Sons, Limited.##Priestley, M., Calvi, G. and Kowalsky, M. (2007). "Direct displacementbased seismic design of structures", 5th New Zealand Society for Earthquake Engineering Conference.##Rezaie, F. and Mortezaie, H. (2017). "Considering the soil effects on design process of performancebased plastic design for reinforced concrete structures", Civil Engineering Infrastructures Journal, 50(2), 205219.##Sahoo, D.R. and Rai, D.C. (2013). "Design and evaluation of seismic strengthening techniques for reinforced concrete frames with soft ground story", Engineering Structures, 56, 19331944.##Tabatabaiefar, S.H.R., Fatahi, B., Ghabraie, K. and Zhou, W. (2015). "Evaluation of numerical procedures to determine seismic response of structures under influence of soilstructure interaction", Structural Engineering and Mechanics, 56(1), 2747.## Tabatabaiefar, S.H.R., Fatahi, B. and Samali, B. (2012). "Seismic behavior of building frames considering dynamic soilstructure interaction", International Journal of Geomechanics, 13(4), 409420.##]
1

Calibration of Load and Resistance Factors for Reinforced Concrete
https://ceij.ut.ac.ir/article_66134.html
10.7508/ceij.2018.01.012
1
Current approach for designing of reinforced concrete members is based on the load and resistance factor. However the load and resistance parameters are random variables, the constant values have been designated for them in the designing procedure. Assuming these factors as the constants, will be led to the unsafe and uneconomical designs. Safe designing of structures requires appropriate recognition of the effective parameters and their uncertainties. Therefore, this achievement is possible through clarifying the effective design parameters and applying riskbased design methods. The main purpose of this paper is reliability based design of the reinforcement concrete structures under bending action. Rectangular sections with tension rebars (singly reinforced), rectangular sections with tension and also compression rebars (doubly reinforced) and Tshape sections are designed based on probabilistic methods. The appropriate tool for reliability calculations is selected based on pros and cons of each method. Evaluation of the load and the resistance factors for all mentioned beams is the next goal of this investigation. In this research, the steel usages for desired safety level are determined through the produced graphs. Using the proposed methodologies, the economic and fully probabilistic design of the concrete beams for bending is now available.
0

217
227


Jala
Akbari
Malayer University
Iran
jalal.akbari@gmail.com


Faezeh
Jafari
Department of Civil Engineering, Malayer University
Iran
f.jaefari556@yahoo.com
Load and Resistance Factors
MonteCarlo simulation
Reinforced Concrete Beam
ReliabilityBased Design
Safety Factor
[Arab, H.G., Ghasemi, M.R., Rashki, M. and Miri, M. (2013). “Enhancing weighted uniform simulation for structural reliability analysis”, International Journal of Optimization in Civil Engineering, 3(4), 635651.##Bentz, E.C., Vecchio, F.J. and Collins, M.P. (2006). “Simplified modified compression field theory for calculating shear strength of reinforced concrete elements”, ACI Structural Journal, 103(4), 614625.##Backes, M.R., Fernández Ruiz, M., and Muttoni, A. (2014). “Interaction between inplane shear forces and transverse bending moments in concrete bridge webs”, Proceeding of the 10th Fib International PhD Symposium in Civil Engineering, Quebec, 29(2), 403411.##Jensen, D.F. (2014). “Reliability analysis for shear in lightweight reinforced concrete bridges using shear beam database”, M.Sc. Thesis, Utah State University.##Lu, R., Luo, Y. and Conte, J.P. (1994). “Reliability evaluation of reinforced concrete beams”, Structural Safety, 14(4), 277298.##Marefat, M.S. and Vafaei, M. (1999). “Direct probabilistic design of reinforced concrete flexural sections using digital simulation”,Esteghlal Journal, 18(2), 1322 (in Persian).##McCormac, J.C. and Brown, R.H. (2015). Design of reinforced concrete, John Wiley & Sons.##NBS (2011), Analysis and design of reinforced concrete buildings, National Building Standard, Ministry of Housing and Urban Development Publisher, Part 9, Iran.##Nowak,A. and Kaszyńska.M. (2011). “Target reliability for new, existing and historical structures”, Czasopismo Techniczne Technical TransactionsCivil Engineering, 19, 219228.##Paik, I., Shin, S. and Shim, C. (2008). “Reliabilitybased code calibration and features affecting probabilistic performance of concrete bridges”, Proceedign of International Fib Symposium, 21(8), 1926.##Paxton, P., Curran, P.J., Bollen, K.A., Kirby, J. and Chen, F. (2001). “Monte Carlo experiments: Design and implementation”, Structural Equation Modeling, 8(2), 287312.##Porco, F., Uva, G., Sangirardi, M. and Casolo, S. (2013). “About the reliability of punching verifications in reinforced concrete flat slabs”, Open Construction and Building Technology Journal, 7, 7487.##Rashki, M., Miri, M. and Moghaddam, M.A. (2012). “A new efficient simulation method to approximate the probability of failure and most probable point”, Structural Safety, 39, 2229.##Rashki, M., Miri, M. and Moghaddam, M.A. (2014). “Closure to a new efficient simulation method to approximate the probability of failure and most probable point”,Structural Safety, 46, 1516.##Ravindra, M.K., Lind, N.C. and Siu, W. (1974). “Illustrations of reliabilitybased design”, Journal of the Structural Division, 100(10), 779783.##Sanaee, E., Shayanfar, M.A. and Mohammahd Zadeh. (2003). “Structural reliability analysis using combinatorial simulation techniques”, Journal of the Engineering Faculty, Ferdowsi University, Mashad, Iran, 11(2), 4357, (in Persian).##Shao, L. and Li, C.Q. (2007). “Reliability based asset management strategy for concrete infrastructure”, International Journal of Materials and Structural Reliability, 5(1), 1328.##Trezos, C.G. and Thomos, G.C. (2002), “Reliability based calibration of the Greek seismic code”, Workshop on Reliability Based Code Calibration, Joint Committee on Stractural Safety (JCSS), Swiss Federal Institute of Technology, ETH Zurich, Switzerland, March 2122.##]